„Je to docela neobyčejný objekt, který vyžaduje neobvyklé vysvětlení,“ říká Eric Mamajek (Harvard-Smithsonian Center for Astrophysics, CfA). Toto prohlášení bylo učiněno na tiskové konferenci 211. zasedání Americké astronomické společnosti v Austinu (Texas, USA).
Objekt nazvaný 2M1207B obíhá kolem hnědého trpaslíka 2M1207A o hmotnosti 25krát vyšší, než je hmotnost planety Jupiter. Oba objekty se nacházejí v souhvězdí Kentaura. Počítačové modely naznačují, že objekt 2M1207A je velmi mladý – jeho stáří se odhaduje na pouhých 8 miliónů roků. Proto i jeho průvodce by měl být starý 8 miliónů roků. V tomto věku by měl již vychladnout na teplotu zhruba 1000 K (tj. asi 730 °C). Avšak současná pozorování ukazují, že teplota objektu 2M1207B je kolem 1600 K (tj. 1330 °C). Tak vysoká teplota může mít původ ve srážce dvou protoplanet.
„Většina planet v naší Sluneční soustavě – pokud ne všechny – prodělala v rané historii svého vývoje srážky s velkými tělesy. Podobná srážka vedla k vytvoření našeho Měsíce a k naklonění rotační osy planety Uran,“ vysvětluje Eric Mamajek. „Je docela pravděpodobné, že k takovýmto kolizím může rovněž docházet i v jiných mladých planetárních soustavách.“
Vzhledem k dané teplotě by astronomové předpokládali určitou svítivost objektu 2M1207B, avšak ten je asi 10krát slabší, než se očekávalo. V roce 2006 se astronomové domnívali, že je zakryt okrajem prachového disku. Mamajek a jeho spolupracovník Michael Meyer (University of Arizona) navrhli alternativní vysvětlení: objekt 2M1207B má malé rozměry, srovnatelné s velikostí planety Saturn, a proto má i mnohem menší povrch k vyzařování energie, než se předpokládalo.
Pro objekt 2M1207B odvodili astronomové poloměr 50 000 km (pro porovnání poloměr planety Saturn je zhruba 60 000 km). Za předpokladu charakteristické hustoty obřích planet by mohl mít objekt 2M1207B hmotnost 80krát převyšující hmotnost Země (což odpovídá zhruba jedné čtvrtině hmotnosti planety Jupiter). Jediné možné vysvětlení pro tak malé těleso, jehož teplota je i po 8 miliónech roků od jeho vzniku tak vysoká, spočívá v tom, že muselo být podrobeno v nedávné době obrovské srážce, díky níž došlo k opětovnému zahřátí.
Planety naší Sluneční soustavy jsou složeny z prachu, horniny a plynů, přičemž při vzniku postupně zvětšovaly svůj průměr v průběhu miliónů roků. Avšak občas došlo ke katastrofickým srážkám dvou těles planetárních rozměrů. Například Měsíc se vytvořil v důsledku srážky tělesa zhruba o polovičním průměru planety Mars s ProtoZemí. Pokud planety vznikají podobným způsobem i v jiných planetárních soustavách, potom objekt 2M1207B může být produktem obdobné kolize mezi tělesem velikosti planety Saturn a objektem zhruba 3krát větším než Země. Když se tato tělesa srazila a spojila se dohromady, vzniklo tak jedno velké těleso dosud ještě zahřáté teplem, vzniklým při této katastrofické události.
„Do Země narazilo těleso o hmotnosti jedné desetiny její vlastní hmotnosti. Je pravděpodobné, že i další planety v naší Sluneční soustavě – včetně Venuše a Uranu – na tom byly podobně,“ vysvětluje Meyer. „Jestliže stejné měřítko bylo dodrženo i v jiných planetárních systémech, pak zde můžeme pozorovat následky kolize mezi obří plynnou protoplanetou o hmotnosti 72 hmotností Země a planetou o hmotnosti 8krát převyšující hmotnost Země, přestože takovéto kolize jsou ve vesmíru velmi nepravděpodobné.“
Mamajek rovněž podotýká, že teorie srážky odpovídá i časovému měřítku. A těleso velikosti Saturnu by mohlo snížit svoji teplotu 1330 °C vyzařováním v průběhu asi 100 000 let. Pokud by se stáří soustavy pohybovalo v miliardách roků, je nepravděpodobné, že bychom ji zahlédli v ten pravý okamžik srážky. Protože soustava je velmi mladá, měli jsme mnohem větší šanci, abychom ji zachytili krátce po kolizi, dokud jsou tepelné důsledky srážky ještě pozorovatelné.
Tato hypotéza srážky nabízí několik předpokladů, které mohou astronomové otestovat. Nejdůležitější z nich je malá přitažlivost na povrchu (která závisí na hmotnosti a poloměru tělesa). K ověření tohoto předpokladu potřebují astronomové získat lepší spektrum objektu 2M1207B – což je problematické, protože se jedná o velmi slabý objekt, který se nachází velmi blízko druhého objektu 2M1207A. Další možnou kontrolou je teorie prachového disku, hledající znaky polarizace ve světle objektu 2M1207B. Většina odpovědí může být k dispozici během jednoho nebo dvou let.
Mamajek zdůrazňuje, že zatímco kolize nemohou přesně vysvětlit podivnosti objektu 2M1207B, příklady srážejících se planet budou pravděpodobně nalezeny prostřednictvím příštích generací pozemních dalekohledů.
„Horké postkolizní planety mohou představovat celou novou třídu objektů, které nám umožní pozorovat dalekohled Giant Magellan Telescope,“ říká Mamajek.
Zdroj: www.cfa.harvard Převzato: Hvězdárna Valašské Meziříčí |