logo ČAS

Česká astronomická společnost

Registrace k odběru novinek
Domů ČAS Články Akce Obloha Download Rady Media Kontakt

Snímek dne
Zachycen
ČAM Leden 2015
Česká astrofotografie měsíce
Kometa C/2014 Q2 Lovejoy
Peter Aniol, Miloslav Druckmüller
Kometa C/2014 Q2 Lovejoy Foto: Peter Aniol, Miloslav Druckmüller
Slunce a Měsíc
Slunce fáze Měsíce
Na obloze
Anatomie planetky Itokawa 2014.02.07 12:45

Diagram struktury planetky (25143) Itokawa - eso1405 Foto: ESO/JAXATisková zpráva Evropské jižní observatoře (005/2014): Vědci použili dalekohled ESO/NTT (New Technology Telescope) k získání prvního přímého důkazu, že planetky opravdu mohu mít značně různorodou vnitřní strukturu. Na základě mimořádně přesných měření astronomové ukázali, že části planetky Itokawa mají odlišnou hustotu. Odhalení vnitřní struktury planetky poskytuje informace nejen o jejím vzniku, ale také může pomoci porozumět dějům, které se odehrávají, když se dvě planetky srazí. A to je důležité při procesu formování planet.

S využitím mimořádně přesných pozemních měření se Stephanu Lowrymu (University of Kent, UK) a jeho kolegům podařilo změřit rychlost i postupné změny rotace blízkozemní planetky (25143) Itokawa. Tato pečlivá pozorování následně zkombinovali s teoretickým modelem tepelného vyzařování tohoto tělesa.  

Jak odhalila japonská sonda Hayabusa v roce 2005, malá planetka Itokawa má velmi zvláštní tvar – podobá se burskému oříšku. K odhalení její vnitřní struktury vědci využili měření změn jasnosti, které vznikají v důsledku rotace tělesa.  K pořízení fotometrických snímků planetky využili mimo jiné i dalekohled ESO/NTT (New Technology Telescope) pracující na observatoři La Silla [1]. Fotometrická data s vysokým časovým rozlišením byla použita k odvození velmi přesné hodnoty periody rotace planetky Itokawa a jejích změn v čase. Když vědci tyto výsledky zkombinovali se známým tvarem tělesa, umožnilo jim to prozkoumat i jeho nitro. Ukázalo se, že vnitřní struktura tělesa je velmi komplikovaná [2]

Vůbec poprvé se nám podařilo prozkoumat, jak vypadá planetka vevnitř,“ vysvětluje Lowry. „Zdá se, že vnitřní struktura planetky Itokawa je značně různorodá. A to je velmi důležitý krok v našem porozumění kamenným tělesům Sluneční soustavy.“

Rotaci planetky a dalších malých těles ve Sluneční soustavě může ovlivňovat i sluneční záření. A to prostřednictvím jevu známého jako YORP efekt (Yarkovsky-O’Keefe-Radzievskii-Paddack effect), který nastává díky zpětnému tepelnému vyzařování energie, kterou těleso absorbovalo ze Slunce. Pokud je tvar planetky nepravidelný, dochází k nerovnoměrnému vyzařování. A to vede ke vzniku jemného, ale neustálého silového působení, které se může projevit postupnou změnou rychlosti rotace [4].   

Lowryho tým naměřil, že YORP efekt rotaci planetky Itokawa postupně urychloval. Změny rychlosti jsou sice drobné – na úrovní 0,045 s za rok, ale představují značný rozdíl ve srovnání s očekávanými hodnotami. Tento nesoulad je možné vysvětli pouze za předpokladu, že časti planetky (nápadné už z jejího tvaru) mají rozdílné hustoty. 

Vůbec poprvé se tak podařilo získat důkazy o značně různorodé vnitřní struktuře planetek. Až dosud bylo možné vlastnosti jejich nitra pouze odhadovat na základě průměrné hustoty. Tento nezvyklý pohled do komplikovaného nitra planetky Itokawa přinesl také řadu spekulací týkajících se jejího vzniku. Jednou z možností je, že vznikla ze dvou původně oddělených komponent dvoj-planetky, které se sloučily po vzájemném kontaktu.

Lowry k tomu dodává: „Prokázání nehomogenní vnitřní struktury planetek má dalekosáhlé důsledky především pro modely vzniku binárních planetek. Zároveň může pomoci při snahách o snižování rizik souvisejících s možnými kolizemi planetek se Zemí nebo při plánování budoucích misí k těmto kamenným tělesům.“
 
Možnost prozkoumat tímto způsobem nitro planetky znamená významný krok kupředu a může pomoci odhalit mnohá tajemství těchto záhadných těles.

 

Zdroj

 

Poznámky

[1] Kromě dalekohledu NTT byla použita měření jasnosti i z těchto dalekohledů: 1,5 m dalekohled (Palomar Observatory, Kalifornie, USA), Table Mountain Observatory (Kalifornie, USA), 1,5 m dalekohled (Steward Observatory, Arizona, USA), Bok Telescope (2,3 m, Steward Observatory, Arizona, USA), Liverpool Telescope (2 m, La Palma, Španělsko), Isaac Newton Telescope (2,5 m, La Palma, Španělsko) a Hale Telescope (5 m, Palomar Observatory, California, USA).

[2] Bylo zjištěno, že hustota planetky se mění v rozmezí 1,75 až 2,85 g/cm3. Hustoty se vztahují ke dvěma vizuálně odděleným částem planetky Itokawa.

[4] Lowry a jeho kolegové byli první, kdo pozoroval skutečný vliv YORP efektu u malé planetky 2000 PH5 (nyní je pojmenována YORP, viz eso0711). Přístroje a dalekohledy ESO hrály významnou roli i v případě této starší studie.

 

Další informace

Výzkum byl prezentován v článku “The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection of YORP Spin-up” autorů Lowry a kol., který vyšel v odborném časopise Astronomy & Astrophysics.

 

Složení týmu: S.C Lowry (Centre for Astrophysics and Planetary Science, School of Physical Sciences [SEPnet], The University of Kent, UK), P.R. Weissman (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA [JPL]), S.R. Duddy (Centre for Astrophysics and Planetary Science, School of Physical Sciences [SEPnet], The University of Kent, UK), B.Rozitis (Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes, UK), A. Fitzsimmons (Astrophysics Research Centre, University Belfast, Belfast, UK), S.F. Green (Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes, UK), M.D. Hicks (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA), C. Snodgrass (Max Planck Institute for Solar System Research, Katlenburg-Lindau, Německo), S.D. Wolters (JPL), S.R. Chesley (JPL), J. Pittichová (JPL) a P. van Oers (Isaac Newton Group of Telescopes, Kanárské ostrovy, Španělsko).

 

ESO je nejvýznamnější mezivládní astronomická organizace Evropy a v současnosti nejproduktivnější pozemní astronomická observatoř. ESO podporuje celkem 15 členských zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko a Velká Británie. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a úspěšný chod výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také vedoucí úlohu při podpoře a organizaci spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal provozuje Velmi velký teleskop (VLT), což je nejvyspělejší astronomická observatoř pro viditelnou oblast světla, a také dva další přehlídkové teleskopy. VISTA pracuje v infračervené části spektra a je největším přehlídkovým dalekohledem na světě, dalekohled VST (VLT Survey Telescope) je největším teleskopem navrženým k prohlídce oblohy výhradně ve viditelné části spektra. ESO je evropským partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Pro viditelnou a blízkou infračervenou oblast ESO rovněž plánuje nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope) s primárním zrcadlem o průměru 39 metrů, který se stane „největším okem do vesmíru“.

 

Odkazy

 

Kontakty

Viktor Votruba; národní kontakt; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: votruba@physics.muni.cz

Jiří Srba; překlad; Hvězdárna Valašské Meziříčí, p. o., Česká republika; Email: jsrba@astrovm.cz

Stephen C. Lowry; The University of Kent; Canterbury, United Kingdom; Tel.: +44 1227 823584; Email: s.c.lowry@kent.ac.uk

Richard Hook; ESO, Public Information Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655; Mobil: +49 151 1537 3591; Email: rhook@eso.org

Katie Scoggins; Press Officer, Corporate Communications Office, University of Kent; Canterbury, United Kingdom; Tel.: +44 1227 823581
Email:
K.Scoggins@kent.ac.uk

Toto je překlad tiskové zprávy ESO eso1405. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.

  Srba Jiří   Zobrazeno: 2860x   Tisk
Bolid a meteorit s rodokmenem 9. 12. 2014
Žereme vesmír@Hvězdárna a Planetárium Brno

Slovníček pojmů
Složky a projekty ČAS

Zvířetníkové světlo, Venuše a Mars: To vše je nám nyní dostupné po setmění. Stačí jen jasná průzračná obloha a pokud možno tmavý výhled k západu, protože kvůli světlu z měst prostě toto slabé světlo jen tak neuvidíme. Jasnou Venuši si ale můžeme vychutnat poměrně vysoko na jihozápadě ještě za světla. Kousek nad ní je slabší Mars. Fotil Vilém Heblík na Pardubicku.
02.17 21:22 Astro M. Gembec

Detail jádra komety: Rosetta se prosmýkla jen asi 6 km od jádra komety 67P a pořídila zajímavé detailní záběry. Něco už je k vidění na webu ESA. Zdroj.
02.16 21:06 Astro M. Gembec

Hlubinami vesmíru s Dr. Adélou Kawka: Nově v archivu TV Noe
02.11 12:14 Astro J. Suchánek

Hlubinami vesmíru s Doc. Miloslavem Zejdou, o dvojhvězdách 1. díl: Premiéra v sobotu 7. února ve 20 hod. na TV Noe. Bližší info včetně repríz
02.05 12:40 Nezařazeno M. Gembec

VISTA – pohled skrz Mléčnou dráhu:

Nový infračervený snímek mlhoviny Trifid odhaluje vzdálené proměnné hvězdy.

Zdroj: ESO

02.05 10:35 Astro M. Gembec

Archiv novinek
Astro.cz v cizím jazyce